Proof :
ok we can proof it by many way :
1) We Want Negative * Negative = Positive
1 + (-1) = 0
1 = (-1) * (-1) End Of Proof (1).
2) Assume That (-1) * (-1) = (-1) Then,
(-1) [ 1 + (-1) ] = (-1) [ 1 + (-1) ]
(-1) [ 0 ] = (-1) * (+1) + (-1) * (-1)
0 = (-1) + (-1)
0 = (-2 ) , Contradiction ...
So, (-1) * (-1) Must Be Equal To ( + 1)
End Of Proof (2).
3) Let x = ab + a(-b) + (-a) (-b) Then ,
x = ab + ( -b)[ a + (-a) ] , By Common Factor ( بأخذ العامل المشترك)
x = ab + 0
Now x = ab + a(-b) + (-a) (-b) For The Same X
x = a [b + (-b) ] + (-a) (-b)
x = 0 + (-a) (-b)
From @ ,and @@ We Get That x = a * b = (-a) * (-b)
That Means a * b = (-a) *(-b)
Or 3 * 3 = (-3) * (-3) =9 .... End Of Proof (3).
END OF PROOF.